The Story of
 "3N Points in a Plane"
 Günter M. Ziegler

Plan

0. Why do you care?
1. A short history
2. A short history, with colors
3. A tight colored Tverberg theorem
4. Tverberg strikes back

Looks harmless

Looks harmless

Find the right theorem!

Looks harmless

Find the right theorem!
Interesting machinery - test the machinery!

Looks harmless

Find the right theorem!
Interesting machinery - test the machinery!
Leaves mystery.

Looks harmless

Find the right theorem!
Interesting machinery - test the machinery!
Leaves mystery. Things to to (for you).

Plan

0. Why do you care?
1. A short history
2. A short history, with colors
3. A tight colored Tverberg theorem
4. Tverberg strikes back

Any 3N points in a plane
can be partitioned into N triangles that intersect.

Any $3 N$ points in a plane
can be partitioned into N triangles that intersect.

Any 3N points in a plane
can be partitioned into N triangles that intersect.

Any $3 N-2$ points in a plane
can be partitioned into N subsets whose convex hulls intersect.

Any $3 N-2$ points in a plane
can be partitioned into N subsets whose convex hulls intersect.

Any $3 N-2$ points in a plane
can be partitioned into N subsets whose convex hulls intersect.

Any $3 N-2$ points in a plane
can be partitioned into N subsets whose convex hulls intersect.

Bryan John Birch (*1931)
Eggleston course at Cambridge thesis

Eggleston's book "Convexity"
"On 3 N points in a plane" Math. Proc. Cambridge Phil. Soc.

Bryan John Birch (*1931)
Eggleston course at Cambridge thesis

Eggleston's book "Convexity"
"On 3 N points in a plane" Math. Proc. Cambridge Phil. Soc.

"very probably 1959 was when I gave up trying to prove higher dimensional cases of Tverberg's theorem ..."

Bryan John Birch (*1931)
Eggleston course at Cambridge thesis

Eggleston's book "Convexity" "On 3 N points in a plane" Math. Proc. Cambridge Phil. Soc.
"Notes on elliptic curves, II" (with Peter Swinnerton-Dyer)

"very probably 1959 was when I gave up trying to prove higher dimensional cases of Tverberg's theorem ..."
$(n+1) N-n$ points in \mathbb{R}^{n}
can be partitioned into N subsets whose convex hulls intersect.

Helge Tverberg (*1935)
UCL London
ICM Stockholm
3D case
Manchester
"A generalization of Radon's theorem"

Helge Tverberg (*1935)

UCL London

ICM Stockholm
3D case
Manchester
"A generalization of Radon's theorem"

"... I recall that the weather was bitterly cold in Manchester. I awoke very early one morning shivering ...'

Helge Tverberg (*1935)
UCL London
ICM Stockholm
3D case
Manchester
"A generalization of Radon's theorem"
"A generalization of Radon's theorem, II

"... I recall that the weather was bitterly cold in Manchester. I awoke very early one morning shivering ...'

Helge Tverberg (*1935)
UCL London
ICM Stockholm
3D case
Manchester
"A generalization of Radon's theorem"
"A generalization of Radon's theorem, II

"On generalizations of Radon's theorem and ..."
"... I recall that the weather was bitterly cold in Manchester. awoke very early one morning shivering ...'

Change in notation:

$$
\begin{array}{lll}
n & \longrightarrow d \\
N & \longrightarrow & r \\
(n+1) N-n & \longrightarrow & (d+1) r-d
\end{array}
$$

Change in notation:

$$
\begin{array}{ll}
n & \longrightarrow d \\
N & \longrightarrow r \\
(n+1) N-n & \longrightarrow(d+1) r-d \\
& =(d+1)(r-1)+1
\end{array}
$$

Change in notation:

$$
\begin{aligned}
n & \longrightarrow d \\
N & \longrightarrow r \\
(n+1) N-n & \longrightarrow(d+1) r-d \\
& =(d+1)(r-1)+1 \\
& =N+1
\end{aligned}
$$

[Tverberg 1966]
Let $d \geq 1, r \geq 2, N:=(d+1)(r-1)$. For every affine map

$$
f: \Delta_{N} \longrightarrow \mathbb{R}^{d}
$$

there are r disjoint faces of Δ_{N} whose f-images intersect.

[Tverberg 1966]
Let $d \geq 1, r \geq 2, N:=(d+1)(r-1)$. For every affine map

$$
f: \Delta_{N} \longrightarrow \mathbb{R}^{d}
$$

there are r disjoint faces of Δ_{N} whose f-images intersect.

[Bárány, Shlosman \& Szücz 1981]; [Özaydin 1987]; ...)
Let $d \geq 1, r \geq 2, N:=(d+1)(r-1)$. For every
map

$$
f: \Delta_{N} \longrightarrow \mathbb{R}^{d}
$$

there are r disjoint faces of Δ_{N} whose f-images intersect.

[Bárány, Shlosman \& Szücz 1981]; [Özaydin 1987]; ...)
[Bárány, Shlosman \& Szücz 1981]; [Özaydin 1987]; ...)

For linear maps: Linear Algebra [Sarkaria \& Onn].

[Bárány, Shlosman \& Szücz 1981]; [Özaydin 1987]; ...)

For linear maps: Linear Algebra [Sarkaria \& Onn].
For continuous maps, r a prime: Use the Borsuk-Ulam theorem, see [Matoušek 2003].

[Bárány, Shlosman \& Szücz 1981]; [Özaydin 1987]; ...)

For linear maps: Linear Algebra [Sarkaria \& Onn].
For continuous maps, r a prime: Use the Borsuk-Ulam theorem, see [Matoušek 2003].
For continuous maps, $r=p^{k}$: Equivariant cohomology, spectral sequences.

[Bárány, Shlosman \& Szücz 1981]; [Özaydin 1987]; ...)

For linear maps: Linear Algebra [Sarkaria \& Onn].
For continuous maps, r a prime: Use the Borsuk-Ulam theorem, see [Matoušek 2003].
For continuous maps, $r=p^{k}$: Equivariant cohomology, spectral sequences.

For other r: open problem.

Plan

0. Why do you care?
1. A short history
2. A short history, with colors
3. A tight colored Tverberg theorem
4. Tverberg strikes back
[Bárány, Füredi \& Lovász 1988/1990]:
On the number of halving planes

[Bárány, Füredi \& Lovász 1988/1990]:
 On the number of halving planes

Lemma 3. There is a positive integer t such that the following holds. Assume that $A, B, C \subset \mathbb{R}^{2}$ are disjoint sets with at least t elements each, such that their union is in general position. Then there exist three disjoint triples $a_{i} b_{i} c_{i}$, $a_{i} \in A, b_{i} \in B, c_{i} \in C(1 \leq i \leq 3)$ such that
$\cap_{i} \operatorname{conv}\left(a_{i} b_{i} c_{i}\right) \neq 0$.

[Bárány, Füredi \& Lovász 1988/1990]:
 On the number of halving planes

Lemma 3. There is a positive integer t such that the following holds. Assume that $A, B, C \subset \mathbb{R}^{2}$ are disjoint sets with at least t elements each, such that their union is in general position. Then there exist three disjoint triples $a_{i} b_{i} c_{i}$, $a_{i} \in A, b_{i} \in B, c_{i} \in C(1 \leq i \leq 3)$ such that $\cap_{i} \operatorname{conv}\left(a_{i} b_{i} c_{i}\right) \neq 0$.

The smallest value of t for which we managed to prove this lemma is 4 , and we do not have a counterexample even for $t=3$. For brevity's sake we give the proof for $t=7$."

[Bárány \& Larman 1991]:

Theorem. Given r red, r white, r green points in the plane, it is possible to form r vertex-disjoint triangles $\Delta_{1}, \ldots, \Delta_{r}$ in such a way that Δ_{i} has one red, one white, and one green vertex for every $i=1, \ldots, r$ and the intersection of these triangles is non-empty.

[Bárány \& Larman 1991]:

Theorem. Given r red, r white, r green points in the plane, it is possible to form r vertex-disjoint triangles $\Delta_{1}, \ldots, \Delta_{r}$ in such a way that Δ_{i} has one red, one white, and one green vertex for every $i=1, \ldots, r$ and the intersection of these triangles is non-empty.

[Bárány \& Larman 1991]:

Theorem. Given r red, r white, r green points in the plane, it is possible to form r vertex-disjoint triangles $\Delta_{1}, \ldots, \Delta_{r}$ in such a way that Δ_{i} has one red, one white, and one green vertex for every $i=1, \ldots, r$ and the intersection of these triangles is non-empty.

[Bárány \& Larman 1991]:

Theorem. Given r red, r white, r green points in the plane, it is possible to form r vertex-disjoint triangles $\Delta_{1}, \ldots, \Delta_{r}$ in such a way that Δ_{i} has one red, one white, and one green vertex for every $i=1, \ldots, r$ and the intersection of these triangles is non-empty.

[Bárány \& Larman 1991]:

Theorem. Given r red, r white, r green points in the plane, it is possible to form r vertex-disjoint triangles $\Delta_{1}, \ldots, \Delta_{r}$ in such a way that Δ_{i} has one red, one white, and one green vertex for every $i=1, \ldots, r$ and the intersection of these triangles is non-empty.

For $d \geq 1, r \geq 2$, determine the smallest $N(r, d)$ such that if $N \geq N(r, d)$ the following holds:
If $f: \Delta_{N} \longrightarrow \mathbb{R}^{d}$, where the $N+1$ vertices of Δ_{N} have $d+1$ colors, each color class of size $\left|C_{i}\right| \geq r$, then Δ_{N} has r disjoint whose f-images intersect.

For $d \geq 1, r \geq 2$, determine the smallest $N(r, d)$ such that if $N \geq N(r, d)$ the following holds:
If $f: \Delta_{N} \longrightarrow \mathbb{R}^{d}$, where the $N+1$ vertices of Δ_{N} have $d+1$ colors, each color class of size $\left|C_{i}\right| \geq r$, then Δ_{N} has r disjoint whose f-images intersect.

For $d \geq 1, r \geq 2$ suitable, $N \geq t(d+1)-1$, the following holds:
If $f: \Delta_{N} \longrightarrow \mathbb{R}^{d}$, where the $N+1$ vertices of Δ_{N} have $d+1$ colors, each color class of size $\left|C_{i}\right| \geq t$, then Δ_{N} has r disjoint whose f-images intersect.

For $d \geq 1, r \geq 2$ suitable, $N \geq t(d+1)-1$, the following holds:
If $f: \Delta_{N} \longrightarrow \mathbb{R}^{d}$, where the $N+1$ vertices of Δ_{N} have $d+1$ colors, each color class of size $\left|C_{i}\right| \geq t$, then
Δ_{N} has r disjoint whose f-images intersect.
[Živaljević \& Vrećica 1992]:
$t=2 r-1$ suffices for r prime
$t=4 r-3$ suffices

For $d \geq 1, r \geq 2$ suitable, $N \geq t(d+1)-1$, the following holds:
If $f: \Delta_{N} \longrightarrow \mathbb{R}^{d}$, where the $N+1$ vertices of Δ_{N} have $d+1$ colors, each color class of size $\left|C_{i}\right| \geq t$, then
Δ_{N} has r disjoint whose f-images intersect.
[Živaljević \& Vrećica 1992]:
$t=2 r-1$ suffices for r prime
$t=4 r-3$ suffices
[Blagojević, Matschke \& Z. 2009]:
$t=r \quad$ suffices for $r+1$ prime
$t=r+o(r)$ suffices

For $d \geq 1, r \geq 2$ suitable, $N \geq t(d+1)-1$, the following holds:
If $f: \Delta_{N} \longrightarrow \mathbb{R}^{d}$, where the $N+1$ vertices of Δ_{N} have $d+1$ colors, each color class of size $\left|C_{i}\right| \geq t$, then
Δ_{N} has r disjoint
whose f-images intersect.
[Živaljević \& Vrećica 1992]:
$t=2 r-1$ suffices for r prime
$t=4 r-3$ suffices
[Blagojević, Matschke \& Z. 2009]:
$t=r \quad$ suffices for $r+1$ prime
$t=r+o(r)$ suffices

Plan

0. Why do you care?
1. A short history
2. A short history, with colors
3. A tight colored Tverberg theorem
4. Tverberg strikes back
[Blagojević, Matschke \& Z. 2009]
Let $d \geq 1, r \geq 2$ prime, $N:=(d+1)(r-1)$,
$f: \Delta_{N} \longrightarrow \mathbb{R}^{d}$ continuous, where the $N+1$ vertices of Δ_{N} have , each color class of size
Then Δ_{N} has r disjoint whose f-images intersect.

[Blagojević, Matschke \& Z. 2009]
Let $d \geq 1, r \geq 2$ prime, $N:=(d+1)(r-1)$,
$f: \Delta_{N} \longrightarrow \mathbb{R}^{d}$ continuous, where the $N+1$ vertices of Δ_{N} have , each color class of size
Then Δ_{N} has r disjoint whose f-images intersect.

Reduction Lemma

([Sarkaria 2000])
It suffices to prove the Theorem for the special case
$\left|C_{0}\right|=\left|C_{1}\right|=\cdots=\left|C_{d}\right|=r-1,\left|C_{d+1}\right|=1$

Reduction Lemma

([Sarkaria 2000])
It suffices to prove the Theorem for the special case
$\left|C_{0}\right|=\left|C_{1}\right|=\cdots=\left|C_{d}\right|=r-1,\left|C_{d+1}\right|=1$

Reduction Lemma
([Sarkaria 2000])
It suffices to prove the Theorem for the special case
$\left|C_{0}\right|=\left|C_{1}\right|=\cdots=\left|C_{d}\right|=r-1,\left|C_{d+1}\right|=1$
... see [de Longueville 2003]
Configuration Space/Test Map (CS/TM) Scheme ([Van Kampen 1932], [Sarkaria 1991], [Živaljević 1997+])

- combinatorial configuration space
- deleted joins

Reduction Lemma
([Sarkaria 2000])
It suffices to prove the Theorem for the special case
$\left|C_{0}\right|=\left|C_{1}\right|=\cdots=\left|C_{d}\right|=r-1,\left|C_{d+1}\right|=1$
... see [de Longueville 2003]
Configuration Space/Test Map (CS/TM) Scheme ([Van Kampen 1932], [Sarkaria 1991], [Živaljević 1997+])

- combinatorial configuration space
- deleted joins

$$
F:\left(\Delta_{r-1, r}\right)^{*(d+1)} \quad \longrightarrow_{\mathbb{Z}_{r}} \quad S^{N-1}
$$

map of orientable pseudomanifolds

$$
\begin{aligned}
& \operatorname{deg}(F) \bmod r \text { the same for all } \mathbb{Z}_{r} \text {-equivariant } F \\
& \operatorname{deg}(F)=0 \text { if } F \text { extends to }\left(\Delta_{r-1, r}\right)^{*(d+1)} *[r] \\
& \operatorname{deg}\left(F_{0}\right)=(r-1)!^{d} \text { for special configuration: }
\end{aligned}
$$

[tom Dieck 1987, Sect. II.3]
 (apply with care, as \mathfrak{S}_{r}-action not free!)

Proof works, i.e.

$$
\begin{gathered}
\left(\Delta_{r-1, r}\right)^{*(d+1)} *[r] \not \bigwedge_{\mathfrak{G}_{r}} S^{N-1} \\
r \nmid(r-1)!^{d+1}
\end{gathered}
$$

i.e. if
r is prime.

[Fadell-Husseini 1988]

still more complicated
(. . . equivariant cohomology, index, spectral sequences)
avoids reduction to the special case
$\left|C_{0}\right|=\left|C_{1}\right|=\cdots=\left|C_{d}\right|=r-1,\left|C_{d+1}\right|=1$
thus allows for generalizations:
Tight cases of the Tverberg-Vrećica Conjecture [Blagojevic, Matschke \& Z. 2011]

Plan

0. Why do you care?
1. A short history
2. A short history, with colors
3. A tight colored Tverberg theorem
4. Tverberg strikes back
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, let C be a set of $|C| \leq 2 r-1$ vertices of Δ_{N}, and $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$ continuous.
Then every Tverberg r-partition has a block with at most 1 vertex in C.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, let C be a set of $|C| \leq 2 r-1$ vertices of Δ_{N}, and $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$ continuous.
Then every Tverberg r-partition has a block with at most 1 vertex in C.

Proof.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, let C be a set of $|C| \leq 2 r-1$ vertices of Δ_{N}, and $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$ continuous.
Then every Tverberg r-partition has a block with at most 1 vertex in C.

Proof. $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$ has a Tverberg r-partition, by TTT.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, let C be a set of $|C| \leq 2 r-1$ vertices of Δ_{N}, and $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$ continuous.
Then every Tverberg r-partition has a block with at most 1 vertex in C.

Proof. $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$ has a Tverberg r-partition, by TTT.
Pigeonhole Principle.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, and let the vertices of Δ_{N} be in $d+1$ color classes C_{0}, \ldots, C_{d} of size $\left|C_{i}\right| \leq 2 r-1$.
Then for every continuous $f: \Delta_{r} \rightarrow \mathbb{R}^{d}$,
Δ_{N} has r disjoint
whose f-images intersect.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, and let the vertices of Δ_{N} be in $d+1$ color classes C_{0}, \ldots, C_{d} of size $\left|C_{i}\right| \leq 2 r-1$.
Then for every continuous $f: \Delta_{r} \rightarrow \mathbb{R}^{d}$,
Δ_{N} has r disjoint whose f-images intersect.

Proof. Let $g_{i}: \Delta_{N} \rightarrow \mathbb{R}$ measure the distance from the subcomplex of Δ_{N} of all faces with at most 1 vertex in C_{i}.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, and let the vertices of Δ_{N} be in $d+1$ color classes C_{0}, \ldots, C_{d} of size $\left|C_{i}\right| \leq 2 r-1$.
Then for every continuous $f: \Delta_{r} \rightarrow \mathbb{R}^{d}$,
Δ_{N} has r disjoint whose f-images intersect.

Proof. Let $g_{i}: \Delta_{N} \rightarrow \mathbb{R}$ measure the distance from the subcomplex of Δ_{N} of all faces with at most 1 vertex in C_{i}.
$\left(f, g_{0}, \ldots, g_{d}\right): \Delta_{N} \rightarrow \mathbb{R}^{2 d+1}$ has a Tverberg r-partition, by TTT.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, and let the vertices of Δ_{N} be in $d+1$ color classes C_{0}, \ldots, C_{d} of size $\left|C_{i}\right| \leq 2 r-1$.
Then for every continuous $f: \Delta_{r} \rightarrow \mathbb{R}^{d}$,
Δ_{N} has r disjoint whose f-images intersect.

Proof. Let $g_{i}: \Delta_{N} \rightarrow \mathbb{R}$ measure the distance from the subcomplex of Δ_{N} of all faces with at most 1 vertex in C_{i}.
$\left(f, g_{0}, \ldots, g_{d}\right): \Delta_{N} \rightarrow \mathbb{R}^{2 d+1}$ has a Tverberg r-partition, by TTT.
Thus there are $x_{1}, \ldots, x_{r} \in \Delta_{N}$ in disjoint faces with $f\left(x_{1}\right)=\cdots=f\left(x_{r}\right)$.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, and let the vertices of Δ_{N} be in $d+1$ color classes C_{0}, \ldots, C_{d} of size $\left|C_{i}\right| \leq 2 r-1$.
Then for every continuous $f: \Delta_{r} \rightarrow \mathbb{R}^{d}$,
Δ_{N} has r disjoint whose f-images intersect.

Proof. Let $g_{i}: \Delta_{N} \rightarrow \mathbb{R}$ measure the distance from the subcomplex of Δ_{N} of all faces with at most 1 vertex in C_{i}.
$\left(f, g_{0}, \ldots, g_{d}\right): \Delta_{N} \rightarrow \mathbb{R}^{2 d+1}$ has a Tverberg r-partition, by TTT.
Thus there are $x_{1}, \ldots, x_{r} \in \Delta_{N}$ in disjoint faces with $f\left(x_{1}\right)=\cdots=f\left(x_{r}\right)$.
For each i, there is a block F_{j} with at most 1 vertex in C_{i}, so $g_{i}\left(x_{j}\right)=0$, while also $g_{i}\left(x_{1}\right)=\cdots=g_{i}\left(x_{r}\right)$.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, and let the vertices of Δ_{N} be in $d+1$ color classes C_{0}, \ldots, C_{d} of size $\left|C_{i}\right| \leq 2 r-1$.
Then for every continuous $f: \Delta_{r} \rightarrow \mathbb{R}^{d}$,
Δ_{N} has r disjoint whose f-images intersect.

Proof. Let $g_{i}: \Delta_{N} \rightarrow \mathbb{R}$ measure the distance from the subcomplex of Δ_{N} of all faces with at most 1 vertex in C_{i}.
$\left(f, g_{0}, \ldots, g_{d}\right): \Delta_{N} \rightarrow \mathbb{R}^{2 d+1}$ has a Tverberg r-partition, by TTT.
Thus there are $x_{1}, \ldots, x_{r} \in \Delta_{N}$ in disjoint faces with $f\left(x_{1}\right)=\cdots=f\left(x_{r}\right)$.
For each i, there is a block F_{j} with at most 1 vertex in C_{i}, so $g_{i}\left(x_{j}\right)=0$, while also $g_{i}\left(x_{1}\right)=\cdots=g_{i}\left(x_{r}\right)$.
Thus each block has at most 1 vertex in C_{i}.
[Blagojević, Frick \& Z. 2014]
Let $d \geq 1, r=p^{k}, N \geq(r-1)(d+1)$, and let the vertices of Δ_{N} be in $d+1$ color classes C_{0}, \ldots, C_{d} of size $\left|C_{i}\right| \leq 2 r-1$.
Then for every continuous $f: \Delta_{r} \rightarrow \mathbb{R}^{d}$,
Δ_{N} has r disjoint whose f-images intersect.

Proof. Let $g_{i}: \Delta_{N} \rightarrow \mathbb{R}$ measure the distance from the subcomplex of Δ_{N} of all faces with at most 1 vertex in C_{i}.
$\left(f, g_{0}, \ldots, g_{d}\right): \Delta_{N} \rightarrow \mathbb{R}^{2 d+1}$ has a Tverberg r-partition, by TTT.
Thus there are $x_{1}, \ldots, x_{r} \in \Delta_{N}$ in disjoint faces with $f\left(x_{1}\right)=\cdots=f\left(x_{r}\right)$.
For each i, there is a block F_{j} with at most 1 vertex in C_{i}, so $g_{i}\left(x_{j}\right)=0$, while also $g_{i}\left(x_{1}\right)=\cdots=g_{i}\left(x_{r}\right)$.
Thus each block has at most 1 vertex in C_{i}.

Plan

0. Why do you care?
1. A short history
2. A short history, with colors
3. A tight colored Tverberg theorem
4. Tverberg strikes back
5. More

Elementary proof?

Elementary proof?

Proof for r not prime powers?

Elementary proof?

Proof for r not prime powers?
How to find a solution?

Elementary proof?

Proof for r not prime powers?
How to find a solution?
Many solutions?

Elementary proof?
Proof for r not prime powers?
How to find a solution?
Many solutions?

Freie Universität \bullet Berlin

Berlin
Mathematical
School

